Clinical digital photography. Part 1: Equipment and basic documentation

mCME articles in Dental Tribune have been approved by:

HAAD as having educational content for 2 CME Credit Hours
DHA awarded this program for 2 CPD Credit Points

By Dr. Eduardo Mahn, DDS, DMD, PhD Universidad de los Andes Clínica CIPÓ Santiago-Chile

A bstract: The use of photography is becoming a standard in modern dental practice. The sharing of pictures is not only essential for communication between dentist, laboratory technician and patient, but also for communication between professionals, undergraduate and postgraduate students with their teachers and for documenting of clinical procedures in cases you want to show to both patients and work colleagues at scientific meetings. This article will describe the necessary equipment for clinical photography, explain its uses and deliver the foundation for basic documentation and structure for clinical cases. The second part will discuss the step by step documentation and show practical examples to improve your results.

Introduction

The first process of photography was presented to the world by Louis J. M. Daguerre at the Paris Academy of Sciences on January 7, 1839.1 In that same year, Alexander S. Wolcott, a manufacturer of dental instruments, designed and patented the first camera producing images on a silver-coated copper plate.2 Thanks to the photographic documentation that this allowed, it created the first dental journal, the American Journal of Dental Science.3

Due to the advancement in technology, we now have the privilege of having digital photography that allows an immediate view of the results and not having to wait for the processing of films as was the case of old movies, utilizing silver halide ions in a gelatin emulsion on a strip of celluloid film to capture latent images. The advantage of digital images is that in addition to instantly seeing them through a viewfinder, there is less cost of developing film negatives and their storage is easy and fast. The power of viewing and saving images in computers also saves space and access to a database is almost immediate. By developing different virtual media files and almost universal use of email, information sharing is almost instantaneous anywhere in the world.

Because many of the procedures performed in dentistry represent established protocols that should be read, learned and then practiced, it becomes clear that photography aids us in teaching or explaining to our patients what we think are common, but to them are complex and mysterious procedures.

Digital Cameras

There are currently hundreds of cameras on the market. If we compare their features and capabilities, we can divide them into 3 groups:

Compact cameras (point and shoot), interchangeable lens cameras (mirrorless system cameras) and reflex cameras, SLRs DSLR (Digital Single Lens Reflex).

Initially, compact cameras (Figure 2) may seem appealing, but they have many limitations. They do not have a consistent image control, the position of the flash is not suitable for intraoral photography, distorted images from utilization of an insufficient macro lens in the wide-angle position, lack of manual exposure and focus problems. One of the biggest problems is the inability to change the lens, which given its design for a wide angle or medium distance, causes distortion of perspective, as the clinician would have to stand close to the patient. This has another negative effect of poor lighting.2,4

The second group seems promising, but is still in development, and the third group, DSLR cameras (Figure 5), are those with greater advantages for clinical use, thanks to the sensor size and the many options in manual mode, lenses and flashes.

These cameras use a lens for both image composition and image capture.5 This design, which allows direct viewing and focusing without parallax error, is ideal for dental photography.5,6 One of the biggest advantages is the ability to exchange lenses. For example, you can take pictures of landscapes, portraits, and all dental treatments with the same camera, by just changing the lens. The same applies with changing the flash. All professional cameras more than meet the requirements. Semiprofessional cameras (with a more affordable price) that meet these requirements are for example Nikon D7000, D300, D300S, Canon EOS 7D, 60D, 50D or other similar brands.

Flash

The discussion with which flash, macro lateral or twin flash light (Figure 4) or ring flash (Figure 5), is most suitable for intraoral photography, and it has been a quite discussed topic for many years.4

The ring flash light is the favourite amongst inexperienced dental photographers and it is considered the universal flash system for general macro photography.6,7 On the one hand, it is true that the greater the distance between the ring flash and the subject, the flatter, less textured and refined the photos are, while a twin flash generates pictures with more texture, contrast and look more alive.8

The macro lateral flash shows more variability in light direction, allowing certain details to be highlighted. The overall hue of colour, cracks and also transitions are best captured with the macro lateral flash.9,10 Probably the only drawback, besides its higher cost, is when photographing posterior regions, where access and space is limited. In these cases, the homogenous light and easy handling of the ring flash has an advantage. In the author’s experience, when a clinician decides to begin clinical photography, a ring flash is more suitable.
than adequate; the extra cost of the macro lateral flash is not justified, since differences in the early stages of the learning curve will not be substantial. Then once they handle certain techniques, the macro lateral flash is a great contribution.

Lenses
Basically, macro lenses from 50 to 200mm in focal length are used for clinical photography. In the author’s experience, macro lenses of about 100 mm in focal length provide the ideal combination of magnification ability and convenience working distance for dental purposes. Teleconverters or zoom lenses can be used, but not recommended. The same goes for lenses with autofocus mode. If this is the case, the automatic mode must be switched off and put on manual. Focusing is done manually and moving the ring lens near a sharp image, and with small movements to and fro, achieves perfect focus. A high quality lens is paramount to capturing crisp and bright photos.

One of the main objectives of documentation and standardization that images should describe. This is of particular importance when showing the use of materials or objects near to the teeth. To prevent the mirror missing up, they must be at a temperature similar to that of the oral cavity. For this effect you can use hot water or any type of air heater. You should also ask the patient to breathe through their nose. Another option is that the dental assistant gives a gentle stream of air with the triple syringe. It is noteworthy that these mirrors are very sensitive with Mirrors, hairs, scratches or marks, so they must be treated with great care by the staff.

Black background or contrastors
The second aspect to show in most of the treatments is a buccal overview of the oral cavity, starting from the anterior teeth. In the Figure 18 and 19, you can see two examples of a photo, the first badly taken and second well taken. In this case, the interest should focus on the anterior teeth that need treatment. Therefore, there is no point taking a picture showing lips, facial hair such as moustache’s, lip retractors and excessively showing gingiva. These structures only distract from what is really important.

It is also easy to make errors in lateral photos, an example of this is Figure 20, which shows that, in addition to an underexposed background, the picture is dark, the angle is not right, you see the lips and the tip of the mirror. On the contrary Figure 21 is a better photo, having the proper exposure and no distracting elements, and the correct angle was taken.

In the occlusal view, both mandibular and maxillary, one must keep in mind the situation of the patient. A good mandibular occlusal photo is far more difficult than the maxilla by several factors: Firstly, the tongue needs to be retracted, secondly, the ratio of the picture may be different, thirdly, the angle of the photo.

In Figure 22 you notice, in addition to being inadequately illuminated, the axis of the arch is not parallel with the photo, we can see the jaws and teeth as well as the edges of the mirror. In contrast, Figure 23 shows an image best achieved where the picture is centered, well lit, and without the presence of other distracting structures.

Case report
One of the main objectives of the documentation process, is to express to patients what steps were performed to reach certain results. It is also beneficial to graphically present and compare new and already established techniques. The following is a simple example of the de-tailed documentation and standardization that images should demonstrate.

Another objective of a systematic photodocumentation is to have graphic material, either for patients to understand or for treatment results objectively, so they have no obscured treatment expectations. These types of aesthetically documented treatments will be discussed and presented with documented cases in a step by step manner in the next chapter of this series, in addition to discussing common mistakes and how to solve them.

References are available from the author.

About the author
Dr. Mahn is a graduate from the University of Chile, School of Dentistry. He received the German DDS in Munich, Westfalen Lippe one year later. The New York University College of Dentistry certified him as Implantologist in 2007. In 2008, he published his doctorate thesis in 2008 titled “Deseintegration of zirconium implants, an in vitro study” and got his doctorate degree in 2009.